Math, asked by asiyasavad24723, 4 months ago

The total surface area of a cylinder is
66pi cm². If its height is 8 cm, find the base
radius of the cylinder.​

Answers

Answered by Steph0303
129

Answer:

  • r = 3 cm

Given:

  • Total Surface Area = 66π cm²
  • Height of the cylinder = 8 cm

To Find:

  • Radius of the cylinder = ?

Steps:

Formula to calculate the Total Surface Area of a cylinder is given as:

\boxed{ \text{TSA of cylinder} = 2 \pi r ( r + h )}

Substituting the given information in the formula we get:

\implies 66 \pi = 2\pi r ( 8 + r )\\\\\\\text{Transposing 2} \: \pi\:  \text{to the LHS we get,}\\\\\\\implies \dfrac{ 66 \pi}{2 \pi} = r ( 8 + r )\\\\\\\implies 33 = 8r + r^2\\\\\\\implies r^2 + 8r - 33 = 0\\\\\\\text{Solving this equation we get,}

\implies r^2 + 11r - 3r - 33 = 0\\\\\\\implies r ( r +11 ) - 3 ( r + 11 ) = 0\\\\\\\implies ( r + 11 ) ( r -3 ) = 0\\\\\\\implies r = (-11) \:\: and \:\: 3\\\\\text{But since 'r' cannot be negative we eliminate}\:\:-11.\:\:\text{Hence we get,}\\\\\implies \boxed{\bf{r = 3\:cm}}

Hence the radius of the base of the cylinder is 3 cm.


ItzBrainlyBeast: Superb answer mod......
ItzBrainlyBeast: hats off......⬆️⬆️
Answered by ItzBrainlyBeast
70

\LARGE\textbf{\underline{\underline{Given  :-}}}

\large\texttt{↦ T.S.A. of the cylinder = 66 π cm² . }\\\\\large\texttt{↦ Height of the cylinder = 8 cm .}

\LARGE\textbf{\underline{\underline{To find :-}}}

\large\texttt{↦ The base of the cylinder = ?}\\\\\large\texttt{↦ The radius of the cylinder = ?}

\LARGE\textbf{\underline{\underline{Formula :-}}}

\large \underline{\boxed{\textsf\textcolor{green}{➙ $ T.S.A. _ { (  \: Cylinder \:  ) } = 2\pi r \: ( r + h )$}}}

\LARGE\textbf{\underline{\underline{Solution :-}}}

\large\: \bigstar\textsf\textcolor{orange}{\: \: \: $ T.S.A. _ { (  \: Cylinder \:  ) } = 2\pi r \: ( r + h )$}\\\\\\\large: \: \Longrightarrow\textsf{$ 66 \: \pi = 2 \pi r \: ( r + 18)$ }\\\\\\\large: \: \Longrightarrow\textsf{$ \cfrac{66 × \pi}{\pi} = 2r \: ( r + 8 )$}\\\\\\\large: \: \Longrightarrow\textsf{$ \cfrac{66 × \cancel\pi}{\cancel\pi} = 2r^{2} + 16r$}\\\\\\\large: \: \Longrightarrow\textsf{- 2r² - 16r + 66 = 0 .....[ Divide by 2 on both the equation]}\\\\\\\large: \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{- r² - 8r + 33 = 0}}}

\large:\: \bigstar\textsf\textcolor{orange}{\: \: \: By factorisation method :-}\\\\\\\large: \: \Longrightarrow\textsf{- r² - 8r + 33 = 0}\\\\\\\large: \: \Longrightarrow\textsf{- r² - 11r + 3r + 33 = 0 }\\\\\\\large: \: \Longrightarrow\textsf{- r ( r + 11 ) + 3 ( r + 11 ) = 0}\\\\\\\large: \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{ ( r + 11 ) ( - r + 3 ) = 0 }}}

➙ Now :-

\large: \: \Longrightarrow\textsf{r + 11 = 0 \: \: \: \: or \: \: \: \: - r + 3 = 0}\\\\\\\large: \: \Longrightarrow\textsf{r = - 11 \: \: \: \: or \: \: \: \: - r = 3 }\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{r = - 11 \: \: \: \: or \: \: \: \: r = 3 }}}

  • Now radius can't be negative .

  • So , the radius of the cylinder = 3 cm .

\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{$ Radius _ { ( \: Cylinder \: ) } = 3 \: cm .$}}}


ItzBrainlyBeast: hiii
ItzBrainlyBeast: reply to meeeee....
ItzBrainlyBeast: hello...
Similar questions