Math, asked by albitobabumoolan, 5 months ago

the total surface area of a cylinder of radius 5 cm is 660 cm square find the height of the cylinder

Answers

Answered by sethrollins13
139

Given :

  • Total Surface Area of Cylinder is 660 cm² .
  • Radius is 5 cm .

To Find :

  • Height of Cylinder .

Solution :

\longmapsto\tt{Radius=5\:cm}

Using Formula :

\longmapsto\tt\boxed{T.S.A\:of\:Cylinder=2\pi{r(r+h)}}

Putting Values :

\longmapsto\tt{660=2\times\dfrac{22}{7}\times{5(5+h)}}

\longmapsto\tt{660\times{7}=44\times{5}\times{(5+h)}}

\longmapsto\tt{4620=220(5+h)}

\longmapsto\tt{4620=1100+220\:h}

\longmapsto\tt{4620-1100=220\:h}

\longmapsto\tt{3520=220\:h}

\longmapsto\tt{\cancel\dfrac{3520}{220}=h}

\longmapsto\tt\bf{16\:cm=h}

So , The Height of Cylinder is 16 cm .

_______________________

  • C.S.A of Cylinder = 2πrh
  • T.S.A of Cylinder = 2πr(r+h)
  • Volume of Cylinder = πr²h

Here :

  • r = Radius
  • h = Height
  • π = 22/7 or 3.14

_______________________


MisterIncredible: Brilliant
Glorious31: Awesome
Anonymous: Fabulous :)
Answered by Anonymous
91

Given:-

  • Total surface area of a cylinder is 660 cm² and radius is 5 cm.

To find:-

  • Height of the cylinder.

Solution:-

Let,

  • the height of the cylinder be h.

Formula used:-

{\dag}\:{\underline{\boxed{\sf{\purple{TSA_{(cylinder)} = 2\pi r (h + r)}}}}}

\tt\longmapsto{660 = 2 \times \dfrac{22}{7} \times 5 (5 + h)}

\tt\longmapsto{660 = \dfrac{220}{7} \times 5 + \dfrac{220}{7} h}

\tt\longmapsto{660 - \dfrac{1100}{7} = \dfrac{220}{7} h}

\tt\longmapsto{\dfrac{4620 - 1100}{7} = \dfrac{220}{7} h}

\tt\longmapsto{220h = 3520}

\tt\longmapsto{h = \dfrac{3520}{220}}

\sf\longmapsto{\boxed{\red{h = 16\: cm}}}

Hence,

  • the height of the cylinder is 16 cm.

More to know :-

\sf{Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\sf{Area\;of\;Square\;=\;(Side)^{2}}

\sf{Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\sf{Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\sf{Area\;of\;Circle\;=\;\pi r^{2}}

\sf{Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\sf{Perimeter\;of\; Square\;=\;4\;\times\;(Side)}

\sf{Perimeter\;of\;Circle\;=\;2\pi r}


sethrollins13: Nice ! ◉‿◉
MisterIncredible: Fantastic
Glorious31: Amazing
Similar questions