Physics, asked by NeedHelpFromMods, 3 months ago

The total surface area of a hemisphere of radius 21cm using value of π=22 / 7 is ___
Please help​

Answers

Answered by MoonlightPhoenix
80

\pink\bigstar Question Given :

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  • \dashrightarrow The total surface area of a hemisphere of radius 21 cm using value of π = 22 / 7 is ?

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\green\bigstar Required Solution :

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

Value Given to us :

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  • \dashrightarrow Radius of hemisphere = 21

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

Formula Used Here :

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  • \dashrightarrow TSA of hemisphere = 3πr²

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

Putting Value in Formula :

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  • \dashrightarrow TSA = 3πr²

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  • \dashrightarrow TSA = 3 × 22 / 7 × 21 × 21

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  • \dashrightarrow TSA = 3 × 22 × 3 × 21 cm

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  • \dashrightarrowTSA = 3 × 1,386 cm

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  • \dashrightarrow TSA = 4,158 cm²

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\orange\bigstar Therefore :

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  • \dashrightarrow TSA will be 4,158 cm²

\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;

_____________________

Answered by spacelover123
72

Given

  • The radius of hemisphere is 21 cm

___________________________

To Find

  • The total surface area

___________________________

Solution

Formula to Find the Total Surface Area of Hemisphere → 3πr²

With the formula, let's substitute 'r' with the given value and use the value of π as 22/7

\sf \implies 3 \times \dfrac{22}{7} \times (21)^{2}

\sf \implies 3\times \dfrac{22}{7}  \times 441

\sf \implies 3\times 22 \times   63

\sf \implies 4158

∴ The total surface area of a hemisphere of radius 21 cm is 4158 cm²

___________________________

Additional Information

  • Total Surface Area of Cone → πr (r + l)
  • Curved Surface Area of Cylinder → πrl
  • Total Surface Area of Cylinder → 2πr (r + h)
  • Curved Surface Area of Cylinder → 2πrh
  • Total Surface Area of Hemisphere → 3πr²
  • Curved Surface Area of Hemisphere → 2πr²

___________________________

Similar questions