Math, asked by anitakanakmanu, 11 months ago

the total surface area of a hollow cylinder is open from both sides is 462026 area of a string is 15.5 square cm and height is 7 cm find the thickness of the cylinder​

Answers

Answered by Anonymous
2

Answer:

Solution:-

Let the radii of outer and inner surfaces are R and r respectively.

∴ Area of the base ring = π(R² - r²)

⇒ 115.5 = π(R² - r²)

⇒ (R² - r²) = 115.5 ÷ 22/7

(R² - r²) = (115.5*7)/22

(R + r) (R - r) = (1155*7)/220

(R + r) (R - r) = 147/4 sq cm ............(1)

Total surface area of the cylinder = 4620 sq cm

Now, total surface area of a hollow cylinder = outer curved surface + inner curved surface area + 2(Area of the circular base)

= 2πRh + 2πrh + 2π(R² - r²)

⇒ 2πRh + 2πrh + 2π(R² - r²) = 4620 

⇒ 2πh (R + r) + (2 × 115.5) = 4620

⇒ 2πh (R + r) + 231 = 4620 

⇒ 2πh (R + r) = 4620 - 231

⇒ 2 × 22/7 × 7 × (R + r) = 4389

⇒ (R + r) = 4389/44

⇒ (R + r) = 399/4  

Substituting the value of (R + r) = 399/4 in equation (1), we get.

(R + r)(R - r) = 147/4

399/4 (R - r) = 147/4

R - r = 147/4 ÷ 399/4

R - r = (147/4) × (4/399)

R - r = 147/399

R - r = 7/19 cm

R - r = 0.368 cm

So, the thickness of the cylinder is 0.368 cm

Answer.

Answered by Anonymous
12

Answer:

Let the radii of outer and inner surfaces be R and r.

(I) TSA of hollow cylinder :

TSA = Outer CSA + Inner CSA + 2(Area of circular base)

➳ 4620 = 2πRh + 2πrh + 2π(R² - r²)

➳ 4620 = 2πh(R + r) + 2 × 115.5

➳ 4620 = 2πh(R + r) + 231

➳ 4620 - 231 = 2πh(R + r)

➳ 4389 = 2πh(R + r)

➳ 4389 = 2 × 22/7 × 7 × (R + r)

➳ 4389 = 44 × (R + r)

➳ 4389/44 = (R + r)

➳ 399/4 = (R + r) ...........[Equation (i)]

_____________________

(II) Area of base ring :

Area of base ring = π(R² - r²)

➳ 115.5 = 22/7(R² - r²)

➳ 115.5 × 7 = 22(R² - r²)

➳ 808.5/22 = R² - r²

➳ 8085/22 = R² - r²

➳ 147/4 = (R + r) (R - r).......[Equation (ii)]

____________________

Now, Substituting equation (I) in equation (II) we get,

➳ 147/4 = (R + r) (R - r)

➳ 147/4 = (399/4) (R - r)

➳ (R - r) = 399/147

➳ (R - r) = 7/19

➳ (R - r) = 0.36842 cm

Therefore, the thickness of the cylinder is 0.36842 cm.

Similar questions