Math, asked by ursula47, 4 months ago

The total surface area of a right circular cone of slant height 20cm is 384πcm².

Calculate:
(i) its radius in cm;
(ii) its volume in cm3, in terms of π.

Answers

Answered by MaIeficent
15

Step-by-step explanation:

Given:-

  • The total surface area of a right circular cone  is 384πcm².

  • Slant height =  20cm

To Find:-

  • The radius

  • The Volume in terms of π.

Solution:-

Total surface area of a cone = πr( l + r)

Where, " l " is the slant height and " r " is the radius.

\sf \implies\pi r(l + r) = 384\pi

\sf \implies r(20 + r) = 384

\sf \implies  {r}^{2}  + 20r  =  384

\sf \implies  {r}^{2}  + 20r -  384 = 0

By splitting the middle term:-

\sf \implies  {r}^{2}  + 32r - 12r -  384 = 0

\sf \implies  r(r  + 32) - 12(r  +   32) = 0

\sf \implies  (r   - 12) (r  +   32) = 0

\sf \implies  r   - 12 = 0 \:  \:  \: (or) \:  \:  \:  \: r  +   32= 0

\sf \implies  r = 12, -32

Since, radius cannot be negative

\sf \implies  r = 12cm

\underline{\boxed{\sf \therefore Radius \: of \: the \: cine = 12cm}}

\sf \implies  h =  \sqrt{ {l}^{2}  -  {r}^{2} }

\sf \implies  h =  \sqrt{ {20}^{2}  -  {12}^{2} }

\sf \implies  h =  \sqrt{400 - 144 }

\sf \implies  h =  \sqrt{256 }  = 16

Height of the cylinder (h) = 16cm

\sf Volume \: of \: the \: cylinder = \dfrac{1}{3}\pi r^2 h

\sf  = \dfrac{\pi}{3} \times   12 \times 12 \times  16

\sf  = \dfrac{2304\pi}{3}

\sf  = 768\pi

\underline{\boxed{\sf \therefore Volume \: of \: the \: cylinder = 768\pi}}

Answered by Anonymous
10

Given:-

❍Total Surface area of cylinder = 384πcm²

❍Slant height = 20cm

Find:-

❍Radius in cm

❍Volume in cm³ in terms of π

Diagram:-

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1.2)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1.2)(0,4){7}{\line(0,1){2}}\put(16,-0.8){\sf{12cm}}\put(6,10){\sf{16cm}} \put(20,10){\sf{20cm}} \end{picture}

Solution:-

(i)

we, know that

 \huge{\underline{\boxed{\sf T.S.A \: of \: cone = \pi r(l + r)}}}

where,

  • Slant Height, l = 20cm
  • T.S.A of cone = 384πcm²

So,

\dashrightarrow\sf T.S.A \: of \: cone = \pi r(l + r) \\  \\

\dashrightarrow\sf 384 \pi= \pi \times r(20 + r) \\  \\

\dashrightarrow\sf 384 \pi= \pi r(20 + r) \\  \\

 \sf \bigstar divide \:  by  \: \pi \: both \: sides \bigstar

\dashrightarrow\sf  \dfrac{384 \pi}{ \pi}=  \dfrac{\pi r(20 + r)}{ \pi} \\  \\

\dashrightarrow\sf 384=r(20 + r)\\  \\

\dashrightarrow\sf 384=20r + {r}^{2} \\  \\

\dashrightarrow\sf {r}^{2} + 20r - 384 = 0\\  \\

\sf \bigstar using \: middle - split \: term\bigstar

\dashrightarrow\sf {r}^{2} + 20r - 384 = 0\\  \\

\dashrightarrow\sf {r}^{2} + 32r - 12r- 384 = 0\\  \\

\dashrightarrow\sf r(r + 32) - 12(r + 32)= 0\\  \\

\dashrightarrow\sf (r - 12)(r + 32)= 0\\  \\

\begin{gathered}\sf r - 12 = 0  \\  \sf r = 12\end{gathered}  \qquad \quad\begin{gathered} \sf r + 32= 0  \\ \sf r =  - 32\end{gathered}\\  \\

 \: \tiny{ \underline{\sf ignoring \: negative \: value \:  -32 \: as \: radius \: can't \: be \: negative}}

\small{\therefore{\underline{ \sf radius = 12cm}}}

____________________________

we, know that

 \huge{\underline{ \boxed{\sf  {h}^{2}  =  {l}^{2}  -  {r}^{2} }}}

where,

  • Slant Height, l = 20cm
  • Radius, r = 12cm

So,

\dashrightarrow\sf  {h}^{2}  =  {l}^{2}  -  {r}^{2} \\  \\

\dashrightarrow\sf  {h}^{2}  =  {20}^{2}  -  {12}^{2} \\  \\

\dashrightarrow\sf  {h}^{2}  = 400 -  144\\  \\

\dashrightarrow\sf  {h}^{2}  =256\\  \\

\dashrightarrow\sf h= \sqrt{256}\\  \\

\dashrightarrow\sf h= 16cm\\  \\

Now, we know that

 \huge{\underline{ \boxed{\sf Volume \: of \: cone =  \dfrac{1}{3} \pi {r}^{2}h}}}

where,

  • Radius, r = 12cm
  • Height, h = 16cm

So,

\mapsto\sf Volume \: of \: cone =  \dfrac{1}{3} \pi {r}^{2}h \\  \\

\mapsto\sf Volume \: of \: cone =  \dfrac{1}{3} \pi  \times {(12)}^{2} \times 16 \\  \\

\mapsto\sf Volume \: of \: cone =  \dfrac{1}{3} \pi  \times 144\times 16 \\  \\

\mapsto\sf Volume \: of \: cone =  \dfrac{1}{3} \pi  \times 2304\\  \\

\mapsto\sf Volume \: of \: cone =  \dfrac{2304}{3} \pi\\  \\

\mapsto\sf Volume \: of \: cone =  768\pi {cm}^{3} \\  \\

\small{\therefore{\underline{ \sf volume \: of \: cone = 768 \pi  {cm}^{3} }}}

____________________________

Hence,

  • Radius = 12cm
  • Volume of Cone = 768π cm³
Similar questions