Math, asked by Anonymous, 5 hours ago

The total surface area of a right circular cone of slant height 13 cm is 90 π cm². Calcualte the (i) radius in cm and (ii) volume in cm³ in terms of π.

Answers

Answered by CopyThat
14

Answer:

(i) 5 cm.

(ii) 100π cm³.

Step-by-step explanation:

Slant height of the cone (l) = 13 cm

(i) Let the radius of the cone be r cm. Then its total surface area:

=> (πrl + πr²)

=> πr(l + r)

=> πr(13 + r) cm²

But, total surface area = 90 π cm² (Given)

∴ πr(13 + r) = 90π

=> r(13 + r) = 90

=> r² + 13r - 90 = 0

=> r² + 18r - 5r - 90 = 0

=> r(r + 18) - 5(r + 18) = 0

=> (r + 18) (r - 5) = 0

r = -18 & 5 [r ≠ -18]

Hence, the radius of the cone is 5 cm.

(ii) Let the height of the cone be h cm. Then,

=> h² = (l² - r²) = (13² - 5²) = 144

=> h = √144 = 12 cm

∴ Volume of cone = 1/3πr²h

=> 1/3π × 5 × 5 × 12

100π cm³

Hence, the volume of the cone is 100π cm³.


Saby123: Nice
Answered by AestheticSoul
37

Required Answer :

  • The radius of cone = 5 cm
  • The volume of cone in terms of π = 100π cm³

Given :

  • Total surface area of a right circular cone = 90 π cm²
  • Slant height of the cone = 13 cm

To find :

  • (i) radius in cm
  • (ii) volume in cm³ in terms of π.

Solution :

⇒ Total surface area = Curved surface of cone + area of base

⇒ TSA = πrl + πr²

⇒ 90π = πr(l + r)

⇒ 90 = r(l + r)

⇒ 90 = r(13 + r)

⇒ 90 = 13r + r²

⇒ r² + 13r - 90 = 0

⇒ Product = - 90r²

⇒ r² + 18r - 5r - 90 = 0

⇒ r(r + 18) - 5(r + 18) = 0

⇒ (r - 5)(r + 18) = 0

⇒ r = 5 or r = - 18 Reject - ve

⇒ r = 5

⇒ The value of r = 5

Therefore,

  • The radius of cone = 5 cm

Using formula,

  • l² = r² + h²

⇒ (13)² = (5)² + h²

⇒ (13 - 5)(13 + 5) = h²

⇒ (8)(18) = h²

⇒ √(8 × 18) = h

⇒ √(2 × 2 × 2 × 2 × 3 × 3) = h

⇒ ± 12 Reject - ve = h

Height of the cone = 12 cm

Volume of the cone :

Using formula,

  • Volume of cone = ⅓ πr²h

⇒ Volume = ⅓ × π × 5 × 5 × 12

⇒ Volume = π × 5 × 5 × 4

⇒ Volume = 100π

Therefore,

  • The volume of cone in terms of π = 100π cm³
Similar questions