Math, asked by farhameraj, 8 months ago

The total surface area of a solid cylinder is 968 cm sq. If curved surface area of the cylinder is 660 cm sq. find the height and volume of the cylinder.​

Answers

Answered by Anonymous
26

Height of cylinder = 15 cm.

Volume of cylinder = 2310 cm².

Step-by-step explanation:

Given that :

  • Total surface area of Cylinder : 968 cm².
  • Curved surface area of Cylinder : 660 cm².

To find :

  • Height of cylinder.
  • Volume of cylinder.

Formula :

\boxed{\large{\tt{\gray{\underline{\blue{Curved\:surface\:area_{(Cylinder)} = 2\pi rh}}}}}}

\sf \implies 2 \times \cfrac{22} {7}  \times rh = 660

\sf \implies rh = \cancel{660} \times \cfrac{7}{\cancel{22}} \times \cfrac{1}{\cancel{2}}

\sf \implies rh = 105 .....(1)

\boxed{\large{ \tt{\gray{\underline{\blue{ Total\:surface\:area_{(Cylinder)} = 2\pi r(r + h)}}}}}}

\sf \implies 2 \times \cfrac{22}{7} \times r(r + h) = 968

\sf \implies r^{2} + rh = \cancel{968} \times \cfrac{7}{\cancel{22}} \times \cfrac{1}{\cancel{2}}

\sf \implies r^{2} + rh = 154

  • Substitute value of (1).

\sf \implies r^{2} + 105 = 154

\sf \implies r^{2} = 154 - 105

\sf \implies r^{2} = 49

\sf \implies r= \sqrt{49}

\sf \implies r= 7

  • Substitute value of radius in (1).

\sf \implies 7h = 105

\sf \implies h = \cfrac{\cancel{105}}{\cancel{7}}

\sf \implies h = 15

Verification :

Substitute the values of radius and height of cylinder in CSA formula.

\sf \implies CSA_{(Cylinder)} = 2\pi rh

\sf \implies CSA_{(Cylinder)} = 2\times \cfrac{22}{\cancel{7}}\times \cancel{7}  \times 15

\sf \implies CSA_{(Cylinder)} = 660

Since, CSA of Cylinder = 660 cm².

Hence, it was verified.

Now :

Find out the value of volume of cylinder.

\boxed{\large{ \tt{\gray{\underline{\blue{ Volume_{(Cylinder)} = \pi r^{2}h}}}}}}

\sf \implies \cfrac{22}{\cancel{7}} \cancel{\times 7} \times 7 \times 15

\sf \implies 2310

\underline{\boxed{\rm{\purple{\therefore Height_{(Cylinder)} = 15\:cm.}}}}\:\orange{\bigstar}

\underline{\boxed{\rm{\purple{\therefore Volume_{(Cylinder)} = 2310\:cm^{2}.}}}}\:\orange{\bigstar}

More info :

Formula related to Cylinders :

◼ TSA = 2πr(r + h)

◼ CSA = 2πrh

◼ Volume = πr²h

______________________________________________________

Similar questions