Math, asked by anujpunjab, 7 months ago

the total surface area of cube is 384cm3. find the volume of cube​

Answers

Answered by Anonymous
0

Given:-

  • \sf{Total\: surface\: area\: of\: the\: cube = 384 {cm}^{2}}

To find:-

  • \sf{Volume\: of\: the\: cube}

Solution:-

We know,

\sf{Total\: Surface\: Area\: of\: a \: cube = 6{a}^{2} \: sq.units}

= \sf{384 = 6{a}^{2}}

= \sf{\dfrac{384}{6} = {a}^{2}}

= \sf{64 = {a}^{2}}

=> \sf{a = \sqrt{64}}

=> \sf{a = 8\: cm}

Now,

\sf{Volume\:of\:a\:cube = {side}^{3}\:cubic\: units}

= \sf{Volume = {(8)}^{3}\:{cm}^{3}}

= \sf{Volume = 512 {cm}^{3}}

\sf{\therefore The\:Volume\:of\:the\:cube\:is\:512\:{cm}^{3}}

Extra Information:-

  • \sf{Volume\:of\:a\:cuboid = length\times breadth\times height\:\: Cubic\:units}
  • \sf{Lateral\:Surface\:Area\:of\:a\:cuboid = 2(Length + Breadth)\times height \:\:sq.units}
  • \sf{Total\:Surface\:Area\:of\:a\:cuboid = 2(length\times breadth + breadth\times height + height\times length)\:\: sq.units}
  • \sf{Volume\:of\:a\:cube = {(side)}^{3}\: cubic\:units}
  • \sf{Lateral\:Surface\:Area\:of\:a\:cube = 4{a}^{2}\: sq.units}
  • \sf{Total\:Surface\:Area\:of\:a\:cube = 6{a}^{2}\: sq.units}
Similar questions