The traffic lights at three different road crossing change after every 48 seconds, 72 second and 108 seconds respectively. if they all change simultaneously at 8 a.m. , then at what time they again change simultaneously
Answers
Answer:
At 8:7:2 (8hrs,7mins,2secs)
Step-by-step explanation:
LCM of 48 , 72 , 108 is 432
There fire they will change simultaneously after 432 seconds
432 seconds=7.2 minutes
If the traffic lights change simultaneously at 8 a.m, then they will change simultaneously again after the LCM of the duration i.e. 48 s, 72 s and 108 s.
LCM of these durations by prime factorisation,,
- 48 = 2 × 2 × 2 × 2 × 3 = 2⁴ × 3
- 72 = 2 × 2 × 2 × 3 × 3 = 2³ × 3²
- 108 = 2 × 2 × 3 × 3 × 3 = 2² × 3³
LCM of 48, 72 and 108 is 2⁴ × 3³ = 432 seconds.
Hence, They will change after 432 seconds i.e. 7 minutes 12 seconds.
The traffic lights will change after:
- 8 am + 7 minutes 12 seconds
- 08 : 07 : 12 am
If the traffic lights change simultaneously at 8 a.m, then they will change simultaneously again after the LCM of the duration i.e. 48 s, 72 s and 108 s.
LCM of these durations by prime factorisation,,
- 48 = 2 × 2 × 2 × 2 × 3 = 2⁴ × 3
- 72 = 2 × 2 × 2 × 3 × 3 = 2³ × 3²
- 108 = 2 × 2 × 3 × 3 × 3 = 2² × 3³
LCM of 48, 72 and 108 is 2⁴ × 3³ = 432 seconds.
Hence, They will change after 432 seconds i.e. 7 minutes 12 seconds.
The traffic lights will change after:
- 8 am + 7 minutes 12 seconds
- 08 : 07 : 12 am