Math, asked by debsantra454, 6 months ago

The traffic lights at three different road crossing change after every 48 seconds,78 seconds and 108 seconds respectively.If they change simultaneously at 7 am,at what time will they change simultaneously again? ​

Answers

Answered by jaspreetsawanniko
0

Answer:

Given that traffic lights at three different roads crossing change after every 48 seconds,72 seconds and 108 seconds respectively.

so let us take the LCM of the given time 48,72 and 108 seconds.

=> 48=2*2*2*2*3 (here * means multiply)

=> 72=2*2*2*3*3

=> 108=2*2*3*3*3

Hence LCM of 48,72 and 108=(2*2*2*2*3*3*3)

LCM of 48,72 and 108=432

So after 432 seconds they will change simultaneously.

we know that

60 seconds=1 minute

So on dividing 432/60 we get 7 as quotient and 12 as reminder

Hence, 432 seconds= 7 minute 12 seconds

Therefore,The time=7a.m.+7 minute 12 seconds

Hence the lights change simultaneously at 7:07:12 a.m.

Thank you.

Answered by BrainlyPARCHO
0

 \large \green{  \fcolorbox{gray}{black}{ ☑ \:  \textbf{Verified \: answer}}}

If the traffic lights change simultaneously at 8 a.m, then they will change simultaneously again after the LCM of the duration i.e. 48 s, 72 s and 108 s.

LCM of these durations by prime factorisation

  • 48 = 2 × 2 × 2 × 2 × 3 = 2⁴ × 3
  • 72 = 2 × 2 × 2 × 3 × 3 = 2³ × 3²
  • 108 = 2 × 2 × 3 × 3 × 3 = 2² × 3³

LCM of 48, 72 and 108 is 2⁴ × 3³ = 432 seconds.

Hence, They will change after 432 seconds i.e. 7 minutes 12 seconds.

The traffic lights will change after:

  • 8 am + 7 minutes 12 seconds
  • 08 : 07 : 12 am
Similar questions