Math, asked by vaishnavi8166, 1 year ago

The traffic lights at three different road crossings change after every
48 seconds, 72 seconds and 108 seconds respectively. If they all change
simultaneously at 8 a.m. then at what time will they again change
simultaneously?​

Answers

Answered by Anonymous
16

\huge{\underline{\underline{\huge{\bold{AnsweR \: :-}}}}}

If the traffic lights change simultaneously at 8 a.m, then they will change simultaneously again after the LCM of the duration i.e. 48 s, 72 s and 108 s.

Then, finding the LCM of these durations by prime factorisation,

  • 48 = 2 × 2 × 2 × 2 × 3 = 2⁴ × 3

  • 72 = 2 × 2 × 2 × 3 × 3 = 2³ × 3²

  • 108 = 2 × 2 × 3 × 3 × 3 = 2² × 3³

LCM is the product of highest degrees of factors. Then, LCM of 48, 72 and 108 is 2⁴ × 3³ = 432 seconds.

Hence:-

They will change after 432 seconds i.e. 7 minutes 12 seconds. The traffic lights will change after:

➙ 8 am + 7 minutes 12 seconds

➙ 8 am + 7 minutes 12 seconds➙ 08 : 07 : 12 am. (Answer)

Answered by BrainlyPARCHO
0

  \green{  \fcolorbox{grey}{grey}{ \checkmark \:  \textsf{Verified \: answer}}}

If the traffic lights change simultaneously at 8 a.m, then they will change simultaneously again after the LCM of the duration i.e. 48 s, 72 s and 108 s.

LCM of these durations by prime factorisation,,

  • 48 = 2 × 2 × 2 × 2 × 3 = 2⁴ × 3
  • 72 = 2 × 2 × 2 × 3 × 3 = 2³ × 3²
  • 108 = 2 × 2 × 3 × 3 × 3 = 2² × 3³

LCM of 48, 72 and 108 is 2⁴ × 3³ = 432 seconds.

Hence, They will change after 432 seconds i.e. 7 minutes 12 seconds.

The traffic lights will change after:

  • 8 am + 7 minutes 12 seconds
  • 08 : 07 : 12 am
Similar questions