The traffic lights at three different road crossings change after every 48 seconds , 72 seconds and 108 seconds respectively. If they change simultaneously at 7 a.m , at what time they will change simultaneously again ?
Answers
Step-by-step explanation:
The traffic lights at three different roads crossing change after every 48 seconds, 72 seconds, and 108 seconds. How often will they change simultaneously? It depends. If at some point they were changing simultaneously, they will continue to do so every 432 seconds.
Answer:
The traffic light at three different road crossing change after every 48 seconds,72 seconds and 108 seconds respectively.
So let us take the LCM of the given time that is 48 seconds, 72 seconds, 108 seconds
⇒ 48 = 2 × 2 × 2 × 2 × 3
⇒ 72 = 2 × 2 × 2 × 3 × 3
⇒ 108 = 2 × 2 × 3 × 3 × 3
Hence LCM of 48, 72 and 108 = (2 × 2 × 2 × 2 × 3 × 3 × 3)
LCM of 48, 72 and 108 = 432
So after 432 seconds they will change simultaneously
We know that
60 seconds = 1 minute
so on dividing 432 / 60 we get 7 as quotient and 12 as reminder
Hence, 432 seconds = 7 min 12 seconds
∴ The time = 7 a.m. + 7 minutes 12 seconds
Hence the lights change simultaneously at 7:07:12 a.m
Step-by-step explanation: