Math, asked by pratishtha1372, 8 months ago

the traffic lights at three diffrent road crossing change after every 36 seconds ,48 seconds and 72 seconds respectively .If they change simultaneously at 8:30 am at what time will they change simultaneously again​

Answers

Answered by nihadshukoorek
2

Answer:

Given that traffic light at three different road crossing change after every 48 seconds,72 seconds and 108 seconds respectively.

So let us take the LCM of the given time that is 48 seconds, 72 seconds, 108 seconds

48 = 2 × 2 × 2 × 2 × 3

72 = 2 × 2 × 2 × 3 × 3

108 = 2 × 2 × 3 × 3 × 3

Hence LCM of 48, 72 and 108 is (2 × 2 × 2 × 2 × 3 × 3 × 3) = 432

So  after 432 seconds they will change simultaneously

We know that 60 seconds = 1 minute

so on dividing 432 / 60 we get 7 as quotient and 12 as reminder

Hence, 432 seconds = 7 min 12 seconds

Therefore the time is = 7 a.m. + 7 minutes 12 seconds

Hence the lights change simultaneously at = 7:07:12 a.m

IF YOU LIKE MY ANSWER PLEASE LEAVE A THANK , RATE AND OFCOURSE MARK ME AS BRAINLIEST

Answered by BrainlyPARCHO
0

 \large \green{  \fcolorbox{gray}{black}{ ☑ \:  \textbf{Verified \: answer}}}

If the traffic lights change simultaneously at 8:30 a.m, then they will change simultaneously again after the LCM of the duration i.e. 48 s, 72 s and 108 s.

LCM of these durations by prime factorisation

  • 48 = 2 × 2 × 2 × 2 × 3 = 2⁴ × 3
  • 72 = 2 × 2 × 2 × 3 × 3 = 2³ × 3²
  • 108 = 2 × 2 × 3 × 3 × 3 = 2² × 3³

LCM of 48, 72 and 108 is 2⁴ × 3³ = 432 seconds.

Hence, They will change after 432 seconds i.e. 7 minutes 12 seconds.

The traffic lights will change after:

8 am + 37 minutes 12 seconds

08 : 37 : 12 am

Similar questions