Math, asked by fathimazakiya560, 1 month ago

The triangle ABC extends the base of BC to D. Prove that A + B + C is a right triangle using the above formula.​

Answers

Answered by manjegowda4488
1

Answer:

o Prove : △ADE∼△ACB

Proof :

(i) In △ADE and △ACB

(1) ∠A=∠A [common]

(2) ∠AED=∠ABC=90

o

(given)

∴ △ADE∼△ACB [AA axiom]

(ii) (AC)

2

=(AB)

2

+(BC)

2

169=(AB)

2

+25

AB=12cm

∵ △ADE∼△ACB

BC

DE

=

AC

AD

=

AB

AE

BC

DE

=

AB

AE

5

DE

=

12

4

DE=

12

20

=

3

5

=1

3

2

cm

Now,

AC

AD

=

AB

AE

13

AD

=

12

4

AD=

12

13×4

=

3

13

=4

3

1

cm.

(iii)

Ar.of(△ADE)

Ar.of(△ABC)

=

AE

2

AB

2

=

16

144

=

1

9

Ar.of(△ADE)

Ar.of(△ADE)+Ar.of(BCED)

=9

1+

Ar.of(△ADE)

Ar.of(BCED)

=9

Ar.of(BCED)

Ar.of(△ADE)

=

8

1

verified_toppr

Similar questions