The triangle ABC is defined by the vertices A=(0,7,10), B=(-1,6,6,) and C=(-4,9,6). Let D be the foot of the altitude from B to the side AC. Then BD is
Answers
Answered by
0
Answer:
Solution
verified
Verified by Toppr
Correct option is B)
Given : A=(0,7,10),B=(−1,6,6) and C=(−4,9,6)
Position vector(P.V.) of AB is (−1,−1,−4)
⟹∣AB∣=
(−1)
2
+(−1)
2
+(−4)
2
=
18
P.V. of BC is (−3,3,0)
⟹∣BC∣=
(−3)
2
+3
2
+0
=
18
P.V. of AC is (−4,2,−4)
⟹∣AC∣=
(−4)
2
+2
2
+(−4)
2
=6
Now, D is the midpoint of AC
⟹D=(
2
0−4
,
2
7+9
,
2
10+6
)=(−2,8,8)
⟹
BD
=−
i
^
+2
j
^
+2
k
^
Answered by
0
Answer:
B
Step-by-step explanation:
Correct option is B)
Given : A=(0,7,10),B=(−1,6,6) and C=(−4,9,6)
Position vector(P.V.) of AB is (−1,−1,−4)
⟹∣AB∣= (−1)
2
+(−1)
2
+(−4)
2
=
18
P.V. of BC is (−3,3,0)
⟹∣BC∣=
(−3)
2
+3
2
+0
=
18
P.V. of AC is (−4,2,−4)
⟹∣AC∣=
(−4)
2
+2
2
+(−4)
2
=6
Now, D is the midpoint of AC
⟹D=(
2
0−4
,
2
7+9
,
2
10+6
)=(−2,8,8)
⟹
BD
=−
i
^
+2
j
^
+2
k
^
Similar questions