Math, asked by khushiraval4716, 1 year ago

The tsa of a cylinder is 231 cm if the csa of the cylinder is 2/3 of tsa find radius and height

Answers

Answered by Anonymous
12
Answer : Radius = 3.5 cm and

Height = 7 cm

Solution :
_________

Given that : Total Surface Area of cylinder = 231 cm² and curved surface area of cylinder is 2/3 of TSA

Then Curved surface area of cylinder

231 \times  \frac{2}{3}   = 154 \:  {cm}^{2}

As we know that :

Total Surface Area of Cylinder = Curved surface area of cylinder+2πr²

154 +  2 \times \frac{22}{7}  \times  {r}^{2}  = 231 \\  \\  =  > 2 \times  \frac{22}{7}  \times  {r}^{2}  = 77 \\  \\  =  >  {r}^{2}  =  \frac{77 \times 7}{22 \times 2}  \\  \\  =  >  {r}^{2}  =  \frac{49}{4}  \\  \\  =  > r =  \frac{7}{2}  = 3.5 \: cm

Now, As we know that : Curved surface area of cylinder = 2πrh

According to the question :

 =  > 2 \times  \frac{22}{7}  \times 3.5  \times h = 154 \\  \\  =  > h =  \frac{154}{22}  = 7 \: cm

So, the radius of the cylinder will be 3.5 cm and height will be 7 cm.
Answered by Priyanshulohani
0

\large\underline\pink{Given:-}

Cylinder of Height = 4 cm

Cylinder of Radius = 3.5 cm

\large\underline\pink{To find:-}

Fine the ratio of the TSA and CSA of a cylinder ....?

\large\underline\pink{Solutions:-}

\: \: \: \: \:  \therefore \: \: Total \: \: surface \: \: area \: \: cylinder \: \: = \: \: {2} \: \pi \: r \: {({r} \: + \: {h})}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {3.5} \: {({3.5} \: + \: {4})}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {3.5} \: \times \: {7.5}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: {22} \: \times \: {0.5} \: \times \: {7.5}

\: \: \: \: \: \leadsto \: \: {44} \: \times \: {3.75}

\: \: \: \: \: \leadsto \: \: {165} \: {cm}^{2}

\: \: \: \: \:  \therefore \: \: Curved \: \: surface \: \: area \: \: of Cylinder \: \: = \: \: {2} \: \pi \: r \: h

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {3.5} \: \times \: {4}

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: {22} \: \times \: {0.5} \: \times \: {4}

\: \: \: \: \:  \leadsto \: \: {44} \:  \times \: {2}

\: \: \: \: \:  \leadsto \: \: {88} \: {cm}^{2}

\: \: \: \: \:  Ratio \: \: = \: \: \frac{TSA \: \: of \: \: Cylinder}{CSA \: \: of \: \: Cylinder}

\: \: \: \: \:  \leadsto \: \: \frac{165}{88}

\: \: \: \: \: \: \: Hence, \\ \: \:\therefore \: \: The \: \: ratio \: \: of \: \: the \: \: TSA \: \: and \: \: CSA \: \: of \: \: a \: \: cylinder \: \: {165} \: : \: {88}

Similar questions