Math, asked by Anonymous, 10 months ago

The two equal sides of an isosceles triangle where it meets, from that vertices a perpendicular is drawn to the opposite side with a length of 8m. The perimeter of triangle is 64m. What is its area?​

Answers

Answered by Anonymous
110

AnswEr :

Reference of Image is in the Attachment :

  • Height ( h ) = 8 m
  • Perimeter = 64 m
  • Area of Triangle ?

According to the Question Now :

⇝ Perimeter = AB + BC + AC

⇝ Perimeter = a + b + a

⇝ 64 = 2a + b

b = 64 - 2a ⠀⠀⠀⠀⠀⠀⠀⠀⠀—eq.( I )

In ∆ ADC, using Pythagoras Theorem :

⇒ AC² = AD² + CD²

⇒ ( a )² = ( 8 )² + ( b /2)²

⇒ a² = 64 + b² /4

⇒ a² = ( 256 + b² ) /4

⇒ 4a² = 256 + b²

  • Putting the value of b from eq.( I )

⇒ 4a² = 256 + ( 64 - 2a )²

⇒ 4a² = 256 + { (64)² + (2a)² - 2 × 64 × 2a }

⇒ 4a² = 256 + 4096 + 4a² - 256a

⇒ 4a² - 4a² + 256a = 256 + 4096

⇒ 256a = 4352

  • Dividing Both term by 256

a = 17 m

Putting the value of a in eq.( I ) :

⇝ b = 64 - 2a

⇝ b = 64 - (2 × 17)

⇝ b = 64 - 34

⇝ b = 30 m

_________________________________

Now Area of the Isoceles Triangle :

⇒ Area = 1 /2 × Base × Height

⇒ Area = 1 /2 × b × h

⇒ Area = 1 /2 × 30 m × 8 m

⇒ Area = 15 m × 8 m

Area = 120 m²

Area of Isosceles Triangle is 120m².

Attachments:
Answered by Anonymous
82

\bf{\huge{\underline{\boxed{\rm{\red{ANSWER\::}}}}}}

Given:

The two equals sides of an isosceles triangle where it meets, from that vertices a perpendicular is drawn to the opposite side with a length of 8m,

The perimeter of triangle is 64m.

To find:

The area of an Isosceles triangle.

Explanation:

We have,

  • Perimeter of triangle= 64m
  • The length of perpendicular of Isosceles Δ.

We know that formula of the perimeter of Isosceles Δ:

→ Perimeter = 2a + b

→ 64m = 2a + b

→ b = 64 - 2a.......................(1)

Two equal sides of an Isosceles triangle:

Using Pythagoras Theorem:

[Hypotenuse]² = [Base] + [Perpendicular]

  • In one part, right angled ΔADC, we get;
  • Hypotenuse= AC
  • Base= CD= b/2
  • Perpendicular= AD=8m

→ AC² = CD² + AD²

→ a² = (b/2)² + 8²

Putting the value of b in this base, we get;

→ a² = (\frac{64-2a}{2} )^{2} + 64

  • [(a-b)² = a² + b² -2ab]

→ a² = \frac{(64)^{2}+(2a)^{2} -2.64.2a }{4} +64

→ 4a² = 4096 + 4a² -256a + 256

→ 4a² -4a² + 256a = 4096 +256

→ 0 +256a = 4352

→ 256a = 4352

→ a = \cancel{\frac{4352}{256} }

→ a = 17m.

Therefore,

Putting the value of a in equation (1),we get;

→ b = 64m - 2(17m)

→ b = 64m - 34m

→ b = 30m

We obtained the two value of isosceles Δ;

  • Base of Isosceles Δ = 30m
  • Side of Isosceles Δ = 17m

Now,

We know that area of Isosceles Δ: base × height/2

⇒ Area of Isosceles Δ = (\frac{30*8}{2}) m^{2}

⇒ Area of Isosceles Δ = (\frac{\cancel{30}*8}{\cancel{2}} )m^{2}

⇒ Area of Isosceles Δ = (15 × 8)m²

⇒ Area of Isosceles Δ = 120m².

Attachments:
Similar questions