The two equal sides of an isosceles triangle where it meets, from that vertices a perpendicular is drawn to the opposite side with a length of 8m. The perimeter of triangle is 64m. What is its area?
Answers
AnswEr :
⋆ Reference of Image is in the Attachment :
- Height ( h ) = 8 m
- Perimeter = 64 m
- Area of Triangle ?
• According to the Question Now :
⇝ Perimeter = AB + BC + AC
⇝ Perimeter = a + b + a
⇝ 64 = 2a + b
⇝ b = 64 - 2a ⠀⠀⠀⠀⠀⠀⠀⠀⠀—eq.( I )
• In ∆ ADC, using Pythagoras Theorem :
⇒ AC² = AD² + CD²
⇒ ( a )² = ( 8 )² + ( b /2)²
⇒ a² = 64 + b² /4
⇒ a² = ( 256 + b² ) /4
⇒ 4a² = 256 + b²
- Putting the value of b from eq.( I )
⇒ 4a² = 256 + ( 64 - 2a )²
⇒ 4a² = 256 + { (64)² + (2a)² - 2 × 64 × 2a }
⇒ 4a² = 256 + 4096 + 4a² - 256a
⇒ 4a² - 4a² + 256a = 256 + 4096
⇒ 256a = 4352
- Dividing Both term by 256
⇒ a = 17 m
• Putting the value of a in eq.( I ) :
⇝ b = 64 - 2a
⇝ b = 64 - (2 × 17)
⇝ b = 64 - 34
⇝ b = 30 m
_________________________________
• Now Area of the Isoceles Triangle :
⇒ Area = 1 /2 × Base × Height
⇒ Area = 1 /2 × b × h
⇒ Area = 1 /2 × 30 m × 8 m
⇒ Area = 15 m × 8 m
⇒ Area = 120 m²
∴ Area of Isosceles Triangle is 120m².
Given:
The two equals sides of an isosceles triangle where it meets, from that vertices a perpendicular is drawn to the opposite side with a length of 8m,
The perimeter of triangle is 64m.
To find:
The area of an Isosceles triangle.
Explanation:
We have,
- Perimeter of triangle= 64m
- The length of perpendicular of Isosceles Δ.
We know that formula of the perimeter of Isosceles Δ:
→ Perimeter = 2a + b
→ 64m = 2a + b
→ b = 64 - 2a.......................(1)
Two equal sides of an Isosceles triangle:
Using Pythagoras Theorem:
[Hypotenuse]² = [Base] + [Perpendicular]
- In one part, right angled ΔADC, we get;
- Hypotenuse= AC
- Base= CD= b/2
- Perpendicular= AD=8m
→ AC² = CD² + AD²
→ a² = (b/2)² + 8²
Putting the value of b in this base, we get;
→ a² = + 64
- [(a-b)² = a² + b² -2ab]
→ a² = +64
→ 4a² = 4096 + 4a² -256a + 256
→ 4a² -4a² + 256a = 4096 +256
→ 0 +256a = 4352
→ 256a = 4352
→ a =
→ a = 17m.
Therefore,
Putting the value of a in equation (1),we get;
→ b = 64m - 2(17m)
→ b = 64m - 34m
→ b = 30m
We obtained the two value of isosceles Δ;
- Base of Isosceles Δ = 30m
- Side of Isosceles Δ = 17m
Now,
We know that area of Isosceles Δ: base × height/2
⇒ Area of Isosceles Δ =
⇒ Area of Isosceles Δ =
⇒ Area of Isosceles Δ = (15 × 8)m²
⇒ Area of Isosceles Δ = 120m².