the two forces F1-3N and f2-1N act on a body in the same direction the Net Force acting on the body (fnet)- [. ]
Answers
To Find
Net force acting on the body
Explanation
Force 1 , F₁ = 3 N
Force 2 , F₂ = 2 N
Here two forces are acting on a body in the same direction ,
| ----> F₁ ----> F₂ Ο |
Note : Fₙ = Net force
:⇒ Fₙ = F₁ + F₂
:⇒ Fₙ = 3 + 2
:⇒ Fₙ = 5 N
So , Net force acting on the body is 5 N
More Info
Newton's Second Law :
Force acting on a body is equals to mass times the acceleration .
⇒ F = m × a
Answer:
Formula Applied :
\begin{gathered}\bullet\ \; \sf \int \sin x=-\cos x\\\\\bullet\ \; \sf \int \cos x=\sin x\\\\\bullet\ \; \sf \int \sec ^2x=\tan x\\\\\bullet\ \; \sf \int \csc^2 x=-\cot x\end{gathered}
∙ ∫sinx=−cosx
∙ ∫cosx=sinx
∙ ∫sec
2
x=tanx
∙ ∫csc
2
x=−cotx
Solution :
\begin{gathered}\\ \displaystyle \sf \int \left(3.sinx-4.cosx+5.sec^2x-2.csc^2x\right)dx\\\end{gathered}
∫(3.sinx−4.cosx+5.sec
2
x−2.csc
2
x)dx
\begin{gathered}\\ \to \displaystyle 3\int \sf sinx\ dx-4\int cosx\ dx+5\int sec^2x\ dx-2\int csc^2x\ dx \\\end{gathered}
→3∫sinx dx−4∫cosx dx+5∫sec
2
x dx−2∫csc
2
x dx
\begin{gathered}\\ \to \displaystyle \sf 3(-cosx)-4(sinx)+5(tanx)-2(-cotx) +c \\\end{gathered}
→3(−cosx)−4(sinx)+5(tanx)−2(−cotx)+c
\begin{gathered}\\ \to \sf -3cosx-4sinx+5tanx+2cotx+c\\\end{gathered}
→−3cosx−4sinx+5tanx+2cotx+c
\begin{gathered}\\ \to \sf \pink{2cotx-3cosx-4sinx+5tanx+c}\ \; \bigstar \\\end{gathered}
→2cotx−3cosx−4sinx+5tanx+c ★
More Info :
Integration and differentiation are both opposite to each other .
Let's see some examples ,
\begin{gathered}\bullet\ \; \sf \dfrac{d}{dx}(sin\ x)=cos\ x\\\\\bullet\ \; \sf \int cos\ x=sin\ x\end{gathered}
∙
dx
d
(sin x)=cos x
∙ ∫cos x=sin x
\begin{gathered}\bullet\ \; \sf \dfrac{d}{dx}(cos\ x)=-sin\ x \\\\\bullet\ \; \sf \int sin\ x=-cos\ x\end{gathered}
∙
dx
d
(cos x)=−sin x
∙ ∫sin x=−cos x