Math, asked by berlinhunter13, 1 year ago

The two lines y=2x+8 and y=2x-12 intersect the x axis at P and Q. Work out the distance PQ

Answers

Answered by MaheswariS
32

\textbf{Given lines are}

y=2x+8\;\&\;y=2x-12

\text{Put y=0, in both equations, we get}

0=2x+8\;\&\;0=2x-12

2x=-8\;\&\;2x=12

x=-4\;\&\;x=6

\therefore\text{The given lines meeet x-axis at P(-4,0) and Q(6,0)}

\text{Now}

\text{The distance between P and Q is}

PQ= \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

PQ= \sqrt{(-4-6)^2+(0-0)^2}

PQ= \sqrt{100}

\implies\boxed{\bf\,PQ= 10}

Similar questions