Math, asked by sanishakhadka2063, 6 months ago

The two numbers are in the ratio of 3:4. If the sum of the numbers is 133. Find the numbers.

Answers

Answered by manyamurgai
9

Answer:

Let the no. be 3x and 4x

3x+4x= 133. (given)

7x=133

x= 19

3x= 3x19 =57

4x= 4x19=76

Hence the no. are 57 nd 76

Answered by Anonymous
27

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large{\sf{\underline{\underline\green{Solution!!}}}}

Let the two numbers be ' x ' and ' y '

It is given that  \sf\dfrac{x}{y}  =  \sf\dfrac{3}{4}

Hence, \sf{ x =\dfrac{3y}{4} ------( Equation\: 1 )}

It is given that x + y = 133

So we know \sf{ x =\dfrac{3y}{4} }  Hence substituting in the above equation we get,

:\implies\:\sf{\dfrac{3y}{4} +y=133}

Taking LCM we get,

:\implies\:\sf{3y+\dfrac{4y}{4}=133 }

:\implies\:\sf{\dfrac{7y}{4}=133 }

:\implies\:\sf{7y=133 \times 4}

:\implies\:\sf{7y=532}

:\implies\:\sf{y=\dfrac{532}{7} }

:\implies\:\sf{y=76 }

Hence the number ' y ' is 76.

We know ' x ' is 3y / 4. Hence we get,

:\implies\:\sf{x=76\times \dfrac{3}{4}  }

:\implies\:\sf{x=57}

\displaystyle\underline{\textsf{Hence\: the \:two \:numbers \:' x ' \:and \:' y ' \:are \:57\: and \:76\: respectively.}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions