Physics, asked by nikhiljeswani77, 1 year ago

The uniform solid block shown in figure has mass M and edge dimensions a, b, and c. Calculate its rotational
inertia about an axis passing through one corner and perpendicular to the large faces.​

Attachments:

Answers

Answered by BrainlyWriter
70

\bf\small\bold{\underline{\underline{Step-By-Step\:Explanation:-}}}

We know that Moment of Inertia of plate passing through 'O' is

Ix = Ma²/12

Iy = Mb²/12

Now by perpendicular axis theorm

Iz = Ma²/12 + Mb²/12

The distance of edge and the center is \bf\bold{d = \sqrt{(a^2 +b^2)/4} }

So by parallel axis theorm,

\bf\bold{I_A= Ma^2/12+ Mb^2/12+Md^2}

On putting d we get the moment of inertia passing through one corner and perpendicular to the large faces is

\bf\bold{M(a^2+b^2)/3}

Note :- source of attachment is Google.

____________________________

Brainly Extra Knowledge :

  • The ability of body to resist the angular motion is measured in terms of the moment of inertia.
Attachments:
Similar questions