Math, asked by chandraaman097, 8 months ago

The union of two subspaces is a
if and only if one is contained in the other.
(a) space
(b) subspace
(c) universe
(d) none of these

Answers

Answered by AlluringNightingale
0

Answer :

b) Subspace

Explanation :

Please refer to the attachments .

Some important information :

Vector space :

(V , +) be an algebraic structure and (F , + , •) be a field , then V is called a vector space over the field F if the following conditions hold :

  1. (V , +) is an abelian group .
  2. ku ∈ V ∀ u ∈ V and k ∈ F
  3. k(u + v) = ku + kv ∀ u , v ∈ V and k ∈ F .
  4. (a + b)u = au + bu ∀ u ∈ V and a , b ∈ F .
  5. (ab)u = a(bu) ∀ u ∈ V and a , b ∈ F .
  6. 1u = u ∀ u ∈ V where 1 ∈ F is the unity .

♦ Elements of V are called vectors and the lements of F are called scalars .

♦ If V is a vector space over the field F then it is denoted by V(F) .

Subspace :

A non empty subset W of the vector space V(F) is said to be a subspace of V if it itself forms a vector space over the same field F .

♦ A non empty subset W of V is said to be a subspace of V(F) iff ax + by ∈ W for every a , b ∈ F and x , y ∈ W .

Attachments:
Similar questions