The unit digit of powers of 7 goes in a loop of 4 i.e. 7 , 9 , 3 , 1 now what is the unit digit of 7^49
Attachments:
Answers
Answered by
0
Step-by-step explanation:
A=83−72
= \LARGE\frac{21 - 16}{56}=5621−16 = \LARGE\frac{5}{56}=565
B = \LARGE \frac{3}{8} - \frac{1}{7 }B=83−71
= \LARGE\frac{21 - 8}{56}=5621−8 = \LARGE\frac{13}{56}=5613
C= \LARGE\frac{2}{8} - \frac{1}{7}C=82−71
= \LARGE \frac{14 - 8}{56}=5614−8 = \LARGE\frac{6}{56}=566
\LARGE\frac{5}{56} : \frac{13}{56} : \frac{6}{56} : \frac{4}{7}565:5613:566:74
= \LARGE \frac{5:13:6:32}{56}=565:13:6:32
= 5:13:6:32=5:13:6:32
Similar questions