Physics, asked by Gaikwad9702, 1 year ago

The unit vector along icap+jcap+kcap is

Answers

Answered by nirman95
8

To find:

The unit vector along icap+jcap+kcap

Calculation:

For a vector :

 \boxed{ \vec{v} = a \hat{i} + b \hat{j} + c \hat{k}}

The general expression for unit vector is:

  \boxed{\hat{v} =  \dfrac{ \vec{v}}{ | \vec{v}| } }

So,in this question , the given vector is:

 \vec{v} = \hat{i} + \hat{j} +  \hat{k}

So, the unit vector will be :

 \hat{v} =  \dfrac{ \vec{v}}{ | \vec{v}| }

  =  > \hat{v} =  \dfrac{ \hat{i} +  \hat{j} +  \hat{k}}{ \sqrt{ {1}^{2}  +  {1}^{2}  +  {1}^{2} } }

  =  > \hat{v} =  \dfrac{ \hat{i} +  \hat{j} +  \hat{k}}{ \sqrt{ 1  +1 +  1} }

  =  > \hat{v} =  \dfrac{ \hat{i} +  \hat{j} +  \hat{k}}{ \sqrt{3} }

So, the required unit vector:

 \boxed{ \bf{\hat{v} =  \dfrac{ \hat{i} +  \hat{j} +  \hat{k}}{ \sqrt{3} } }}

Similar questions
Math, 8 months ago