Physics, asked by noshabanasreen01, 4 months ago

the unit vector perpendicular to the plane containing A and B if A=2i -3j-k;B=i+4j -2k​

Answers

Answered by himavarshini5783
5

Explanation:

Given A = 2i-3j-k

B = i+4j-2k

A X B is the vector perpendicular to the plane containing A and B

A X B

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: | \:  \: i \:  \:  \:   \:  \:  \: j \:  \:  \:  \:  \:  \: k |  \\  \:  \:  \:   determinant= \:  \:  \:  \: |2 \: - 3 \:  - 1 \:  \:  | \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  |  \:  \:  \:  1 \: \:  \:  4 \:   \: - 2|

= i(6+4)-j(-4+1)+k(8+3)

= 10i+3j+11k

unit vector

 \frac{10i + 3j + 11k  }{ \sqrt{ {10}^{2} +  {3}^{2}   +  {11}^{2}  }}  \\  =  \frac{10i + 3j + 11k}{ \sqrt{230} }

Similar questions