Math, asked by cats2218, 10 months ago

The units digit is twice the tens digit. If the number is doubled, it will be 12 more than the reversed number. Find the number.

Answers

Answered by Anonymous
17

\huge\red{\fbox{\tt{Aɴѕωєя࿐}}}

x: the unit digit

y: the tens digit

The unit digit is twice the tens digit so:

x=2y

The two digit number:

10y+x

The two digit number doubled:

2(10y+x)

The reversed number:

10x+y

So:

2(10y+x)=10x+y+12

substitute x for 2y

2(10y+2y)=10(2y)+y+12

24y=21y + 12

3y=12

y=4

x=2y=2*4=8

So the number is 48.

Answered by amarjyotijyoti87
8

Step-by-step explanation:

x: the unit digit

y: the tens digit

The unit digit is twice the tens digit so:

x=2y

The two digit number:

10y+x

The two digit number doubled:

2(10y+x)

The reversed number:

10x+y

So:

2(10y+x)=10x+y+12

substitute x for 2y

2(10y+2y)=10(2y)+y+12

24y=21y + 12

3y=12

y=4

x=2y=2*4=8

So the number is 48.

Similar questions