Math, asked by oramkabita32, 8 months ago

The units place digit of a two digit number is four times the digits in the tens place . if the digits are reversed and the original number is subtracted from the new number , the difference is 54 . find the original number​

Answers

Answered by stylishtamilachee
7

Answer:

Let the tens place digit be a, so the unit place digit should be 4a. And number should be a 4a, or, a(10) + 4a = 14a.

When digits are reversed, new number is a 4a, or, 10(4a) + a = 41a

According to question, if the digits are reversed and the original number is subtracted from the new number, the difference is 54.

= > 41a - 14a = 54

= > 27a = 54

= > a = 2

Hence the desired number is 14a = 14(2) = 28 Required number is 28.

Answered by Anonymous
4

\huge\star \: {\sf{\underline{\orange{SolUtion:-}}}}

{\tt{\red{Let  \:the \: tens \:digits  \: be \: a, \: so \: the \: unit \:place \:digits \: be\: 4a.}}}

{\tt{\pink{The \: number \: should \: be = 4a}}}

{\tt{\pink{By, \: reversing  \: digits \: we \:get ,}}}

{\tt{\pink{or, \: 10(4a) + a  = 41a}}}

{\tt{\underline{A.T.Q}}}

{\tt{\blue{ If \: Reversing \: digits \:are  \: subtracted \: from \:  the \: new \: number \: the \: difference\: is \: 54,}}}

{\implies{\tt{\pink{41a - 14a = 54}}}} \\    \\

{\implies{\tt{\pink{27 a = 54}}}} \\    \\

{\implies{\tt{\pink{a  = \cancel\frac{54}{27} = 2}}}} \\  \\

\boxed   {\green{\therefore{ a =2}}} \\  \\

{\tt{\purple{Hence\:,the \: original \: number \: is \: 14 a }}}

{\tt{\purple{putting\:,the \: value\: of \: a \: we get, 14a = 14(2)  = 28}}}

\boxed   {\green{ \: The \: original \: number = 28}}  \\  \\

Similar questions