CBSE BOARD X, asked by simran3473, 1 day ago

the valie of sin60 + cot45 - cosec30 / sec60 - cos30 + tan45​

Answers

Answered by nd091997
0

Answer:

1

Explanation:

sin60= √3/2

cot45= 1

cosec30=2

sec60=2

cos30=√3/2

tan45= 1

√3/2 +1 - 2/2-√3/2+1= 1

Answered by ArunSivaPrakash
0

The value of  \frac{sin60 + cot45 - cosec30}{sec60 - cos30 + tan45} is = \frac{\sqrt{3} - 2}{6 - \sqrt{3} }.

Given:

Given, \frac{sin60 + cot45 - cosec30}{sec60 - cos30 + tan45}.

To Find:

We have to find the value of the expression \frac{sin60 + cot45 - cosec30}{sec60 - cos30 + tan45}.

Solution:

The value of given angles are:

sin 60° = \frac{\sqrt{3} }{2}.

cot 45° = 1.

cosec 30° = 2.

sec 60° = 2.

cos 30° = \frac{\sqrt{3} }{2}.

tan 45° = 1.

On substituting all these values in the given expression, we get,

\frac{sin60 + cot45 - cosec30}{sec60 - cos30 + tan45} = \frac{\frac{\sqrt{3} }{2} + 1 - 2}{2 - \frac{\sqrt{3} }{2} + 1}

= \frac{\sqrt{3} - 2}{6 - \sqrt{3} }.

Hence, the value of \frac{sin60 + cot45 - cosec30}{sec60 - cos30 + tan45} is = \frac{\sqrt{3} - 2}{6 - \sqrt{3} }.

#SPJ2

Similar questions