Math, asked by dollynarang99, 1 year ago

The value of 0.854 (bar on 54)+0.23 (23 bar)-0.68 (bar 8) is:​

Answers

Answered by abhi178
3

value of 0.8\bar{54}+0.\bar{23}-0.6\bar{8} is 0.3\bar{97}

we have to find the value of 0.8\bar{54}+0.\bar{23}-0.6\bar{8}

first we have to express all the given terms in p/q form where q ≠ 0 after that we can easily solve it.

let's try to do it...

0.8\bar{54} = (854-8)/990

= 846/990 = 423/495

0.\bar{23} = (23 - 0)/99 = 23/99

0.6\bar{8} = (68 - 6)/90 = 62/90

= 31/45

now, 0.8\bar{54}+0.\bar{23}-0.6\bar{8} = 423/495 - 23/99 + 31/45

= (423 + 115 - 341)/495

= (538 - 341)/495

= 197/495

= 0.39797979....

= 0.3\bar{97}

also read similar questions : Show that 0.12 bar +0.1 bar = 0.23

https://brainly.in/question/4419614

What will be the value of 0.23 bar+0.22bar ?

https://brainly.in/question/2018253

Answered by pulakmath007
27

\displaystyle\huge\red{\underline{\underline{Solution}}}

First we explain the process how to calculate

 \displaystyle \: 0.8 \overline{54}

PROCESS

 { Let}    \: \: x  = \displaystyle \: 0.8 \overline{54}

 \implies \: x = 0.854545454......... \:  \:  \:  \:  -  -  - (1)

Multiplying both sides by 10 we get

10x = 8.54545454......... \:  \:  -  -  - (2)

Again Multiplying both sides of Equation (1) by 1000

1000x = 854.54545454....... \:  \:  -  -  - (3)

Now Equation (3) - Equation (2) gives

990x = 846

 \implies \displaystyle \: x =  \frac{846}{990}

So

\displaystyle \: 0.8 \overline{54} =  \frac{846}{990}

Similarly

\displaystyle \: 0. \overline{23} =  \frac{23}{99}

\displaystyle \: 0.6 \overline{8} =  \frac{62}{90}

Hence

\displaystyle \: 0.8 \overline{54}  + 0. \overline{23}  - 0.6\overline{8}

 =  \displaystyle \sf{ \frac{846}{990}  \:  +  \frac{23}{99} -  \frac{62}{90}   \: }

 =  \displaystyle \sf{ \frac{(846 + 230 - 62)}{990}    \: }

 =  \displaystyle \sf{ \frac{394}{990}  \:\: }

 =  \displaystyle \sf{ 0.397979.....\: }

  = \sf{ \:0.3 \overline{97}  \: }

Similar questions