Math, asked by krishna7684, 1 year ago

the value of 1/2+root7 + 1/root7+root10 +......+1/root28+root31 is

Attachments:

Answers

Answered by neosingh
11
Rationalize the denominator
multiply and divide by √7-2

1/(√7 +2)
= (√7-2)/(√7+2)*(√7-2 )
= (√7-2)/(7-4 )
= (√7-2)/3

similarly terms will be
(√10-√7)/3
.
.
.
.

(√31-√28)/3

add all to get
(√31-2)/3
option 4 is the correct ans

neosingh: what doubt do u have
neosingh: just rationalize each term separately
krishna7684: Is we also have to find common diffirence
neosingh: No its not an AP, it a series when u add terms will get cancelled
neosingh: get it or should i upload it in writing?
krishna7684: Can you show how to add three therms
neosingh: ok wait 5min,i will upload the pic
krishna7684: thnx
krishna7684: hello
abhinav04588: wrong
Answered by InesWalston
4

Answer-

D. \frac{\sqrt{31}-2}{3}

Solution-

The given expression is,

=\frac{1}{2+\sqrt{7}} +\frac{1}{\sqrt{7}+\sqrt{10}}+......+\frac{1}{\sqrt{28}+\sqrt{31}}

=\frac{1}{\sqrt{4}+\sqrt{7}} +\frac{1}{\sqrt{7}+\sqrt{10}}+......+\frac{1}{\sqrt{28}+\sqrt{31}}

=\frac{(\sqrt{4}-\sqrt{7})}{(\sqrt{4}+\sqrt{7})(\sqrt{4}-\sqrt{7})} +\frac{(\sqrt{7}-\sqrt{10})}{(\sqrt{7}+\sqrt{10})(\sqrt{7}-\sqrt{10})}+......+\frac{(\sqrt{28}-\sqrt{31})}{(\sqrt{28}+\sqrt{31})(\sqrt{28}-\sqrt{31})}

=\frac{(\sqrt{4}-\sqrt{7})}{(\sqrt{4})^2-(\sqrt{7})^2} +\frac{(\sqrt{7}-\sqrt{10})}{(\sqrt{7})^2-(\sqrt{10})^2}+......+\frac{(\sqrt{28}-\sqrt{31})}{(\sqrt{28})^2-(\sqrt{31})^2}

=\frac{(\sqrt{4}-\sqrt{7})}{4-7} +\frac{(\sqrt{7}-\sqrt{10})}{7-10}+......+\frac{(\sqrt{28}-\sqrt{31})}{28-31}

=\frac{(\sqrt{4}-\sqrt{7})}{-3} +\frac{(\sqrt{7}-\sqrt{10})}{-3}+......+\frac{(\sqrt{28}-\sqrt{31})}{-3}

=\frac{(\sqrt{7}-\sqrt{4})}{3} +\frac{(\sqrt{10}-\sqrt{7})}{3}+......+\frac{(\sqrt{31}-\sqrt{28})}{3}

= \frac{1}{3}[\sqrt{7}-\sqrt{4}}+\sqrt{10}-\sqrt{7}+......+\sqrt{31}-\sqrt{28}]

One term from the first fraction (i.e √4) and other from the last (i.e √31) will remain eventually, and all the other terms will be cancelled out.

= \frac{1}{3}[\sqrt{31}-\sqrt{4}]

= \frac{\sqrt{31}-\sqrt{4}}{3}

= \frac{\sqrt{31}-2}{3}

Similar questions