Math, asked by snehapsirohipesc4c, 10 months ago

The value of
1/3log 10 ^125- 2log10⁴+ log10³²​

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{1}{3}  log(10)^{125}  - 2 log(10)^{4}  +  log(10)^{32}  =  \frac{217}{3}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  \frac{1}{3}  log(10)^{125}  - 2 log(10)^{4}  +  log(10)^{32}  \\  \\  \red{\underline \bold{To \: Find :}}\\ \tt:  \implies  \frac{1}{3}  log(10)^{125}  - 2 log(10)^{4}  +  log(10)^{32} = ?

• According to given question :

\bold{As \: we \: know \: that} \\\tt:  \implies  \frac{1}{3}  log(10)^{125}  - 2 log(10)^{4}  +  log(10)^{32}  \\  \\  \tt:  \implies  \frac{125}{3}  log(10)  - 2 \times 4 log(10)  + 32 log(10)  \\  \\ \tt:  \implies  \frac{125}{3}   log(10)  - 8 log(10)  + 32 log(10)  \\  \\  \tt \circ \:   log(10) = 1 \\  \\  \tt:  \implies  \frac{125}{3}  \times 1 - 8 \times 1 + 32 \times 1 \\  \\ \tt:  \implies \frac{125}{3}  - 8 + 32 \\  \\ \tt:  \implies \frac{125 - 24 +  96}{3}  \\  \\  \green{\tt:  \implies \frac{217}{3} } \\  \\   \green{\tt \therefore \frac{1}{3}  log(10)^{125}  - 2 log(10)^{4}  +  log(10)^{32}  =  \frac{217}{3} }

Answered by Saby123
3

 \tt{\huge{\green{Solution_{BQ} \::- }}}

QUESTION :

Find The value of 1/3log 10 ^125- 2log10⁴+ log10³².

SOLUTION :

In attachment...

Attachments:
Similar questions