Math, asked by vaidic67, 5 months ago

The value of 1.5-0-8 is.​

Answers

Answered by itzwasteperson
0

We have for x∈R,

x−1<[x]≤x

or, nx−1<[nx]≤nx [For n∈N].

Then,  

(x−1)+(2x−1)+....+(nx−1)<[x]+[2x]+....+[nx]≤x+2x+.....+nx

⇒  

2

n(n+1)

​  

x−n<[x]+[2x]+....+[nx]≤  

2

n(n+1)

​  

x

⇒(  

2

1

​  

+  

2n

1

​  

)x−  

n

1

​  

<  

n  

2

 

[x]+[2x]+....+[nx]

​  

≤(  

2n

1

​  

+  

2n

1

​  

)x

⇒  

n→∞

lim

​  

(  

2

1

​  

+  

2n

1

​  

)x−  

n

1

​  

≤  

n→∞

lim

​  

 

n  

2

 

[x]+[2x]+....+[nx]

​  

≤  

n→∞

lim

​  

(  

2

1

​  

+  

2n

1

​  

)x [Using limit property]

⇒  

2

x

​  

≤  

n→∞

lim

​  

 

n  

2

 

[x]+[2x]+....+[nx]

​  

≤  

2

x

​  

 

Using Sandwich property we get,

n→∞

lim

​  

 

n  

2

 

[x]+[2x]+....+[nx]

​  

=  

2

x

​  

Similar questions