The value of [1/√5-2 + 1/√5+2]² is
Answers
Step-by-step explanation:
xxxxxxxxxxxxxxxxxxxxxxxxccxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxccxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxccxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxccxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxccxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxccxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxccxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxccxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxccxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxccxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Answer:
6
Step-by-step explanation:
by using (A+B)^2=A^2+2AB+B^2
={(1/√5+2)^2+2(1/√5-2)(1/√5+2)+(1/√5+2)^2}
={1^2/(√5-2)^2+2(1*1/(√5-2)(√5+2)+1^2/(√5+2)^2}
(a+b)(a-b)=a^2-b^2
={1/5+4√4+4+2*(1/5-4)+1/5+4√5+4}
={1/9+4√4+2+1/9√4}
=(1/9√4+1/9√4+2)
=(2/9√4+2/1)
=2*1+2*(9√4)÷9√4
=2+18+2√4÷9√4
=2+2+2
=6
I hope you will better understand•