Math, asked by chinmay2020, 8 months ago

The value of 1.9999… in the form



, where are integers and ≠ 0​

Answers

Answered by shadowsabers03
4

Let,

\longrightarrow x=1.999\dots\quad\quad\dots(1)

Multiplying by 10,

\longrightarrow 10x=19.999\dots\quad\quad\dots(2)

Subtracting (1) from (2),

\longrightarrow 10x-x=19.999\dots\,-1.999\dots

Neglecting the decimal part,

\longrightarrow 9x=19-1

\longrightarrow 9x=18

\longrightarrow x=\dfrac{18}{9}

\longrightarrow\underline{\underline{x=2}}

Now x=1.999\dots is in the form \dfrac{p}{q} where p and q are integers and q\neq0.

In x=2=\dfrac{2}{1}, we have p=2k and q=k for any non - zero integer k.

Similar questions