The value of (1+cotA-cosecA)(1+tanA+secA) is:
Answers
Answered by
1
Answer: 2
Step-by-step explanation:
cosecA=1/sinA
secA=1/cosA
And cotA=(cosA/sinA)
tanA=(sinA/cosA)
(sinA+cosA-1)(cosA+sinA+1)/sinAcosA
Now (a+b)(a-b)=a^2-b^2
((sinA+cosA)^2–1)/sinAcosA
(sin^2A+2sinAcosA+cos^2A-1)/sinAcosA
sin^2A+cos^2A=1
2sinAcosA/sinAcosA=2
=2
Answered by
0
Similar questions