Math, asked by santoshhkumar1939, 6 months ago

The value of (1+cotA-cosecA)(1+tanA+secA) is:​

Answers

Answered by vidhyaliingaiah1925
1

Answer: 2

Step-by-step explanation:

cosecA=1/sinA  

secA=1/cosA  

And cotA=(cosA/sinA)

tanA=(sinA/cosA)

(sinA+cosA-1)(cosA+sinA+1)/sinAcosA  

Now (a+b)(a-b)=a^2-b^2

((sinA+cosA)^2–1)/sinAcosA  

(sin^2A+2sinAcosA+cos^2A-1)/sinAcosA  

sin^2A+cos^2A=1  

2sinAcosA/sinAcosA=2

=2

Answered by sandy1816
0

(1 + cota - coseca)(1 + tana + cota) \\  \\  = ( \frac{sina + cosa - 1}{sina} )( \frac{cosa + sina  + 1}{cosa} ) \\  \\  =  \frac{( {sina + cosa)}^{2} - 1 }{sinacosa}  \\  \\  =  \frac{2sinacosa}{sinacosa}  \\  \\  = 2

Similar questions