the value of (1+i/1-i)^4 is
Answers
Answered by
0
Answer:
−8
Step-by-step explanation:
(1+i) 4 +(1−i) 4
⇒ [(1+i) 2 ] 2 +[(1−i) 2 ] 2
We know, (a+b) 2
=a 2+2ab+b 2 and (a−b) 2
= 2 −2ab+b 2
⇒ [1+2i+i 2 ] 2 +[1−2i+i 2 ] 2
⇒ [1+2i−1] 2 +[1−2i−1] 2
2 =[i−1 ]
⇒ (2i) 2 +(−2i) 2
⇒ 4i 2 +4i 2
⇒ −4−4
⇒ −8
∴ (1+i) 4 +(1−i) 4 =−8
Answered by
0
Answer:
(1+i) 4 +(1−i) 4
⇒ [(1+i) 2] 2 +[(1−i) 2 ] 2
We know, (a+b)
2 =a 2 +2ab+b 2 and (a−b) 2 =2−2ab+b
⇒ [1+2i+i 2 ] 2 +[1−2i+i 2] 2
⇒ [1+2i−1] 2 +[1−2i−1] 2 [ i 2=−1 ]
⇒ (2i) 2+(−2i) 2
⇒ 4i 2 +4i 2
⇒ −4−4
⇒ −8
∴ (1+i) 4+(1−i) 4 =−8
Step-by-step explanation:
pls make me as a brainlist
Similar questions