Math, asked by dushyantvaishnavbrv, 2 months ago

The value of 1 is of a)   2 2 sec - tan b)   2 2 sin - cos c) 2 sin - cos d)   2 2 cot  cosec​

Answers

Answered by hrutuja14
1

(sinA+cscA)2+(cosA+secA)2

=sin2A+csc2A+2sinAcscA+cos2A+sec2A+2cosAsecA   As[a²+b²+2ab=(a+b)²]

=sin2A+csc2A+2sinA×sinA1+cos2A+sec2A+2cosAcosA1 .

 since secA=cosA1 and cscA=sinA1 

=sin2A+csc2A+2+cos2A+sec2A+2

=(sin2A+cos2A)+csc2A+sec2A+4

=1+1+cot2A+1+tan2A+4      since csc2A=1+cot2A and sec2A=1+tan2A

=7+tan2A+cot2A

Answered by sweetboy43
1

sinA(1+tanA)+cosA(1+cotA)

= sinA(1+

cosA

sinA

)+cosA(1+

cosA

sinA

)

= (sinA+cosA)(

cosA

sinA

+

sinA

cosA

)

= (sinA+cosA)(

sinA+cosA

sin

2

A+cos

2

A

= secA+cosecA

Thus, 1 satisfies the given equation.

Step-by-step explanation:

hope it is helpful please follow add brain list

Similar questions