Math, asked by vijaydhi, 10 months ago

the value of 1/root7-root6 is

Answers

Answered by dibyajyoti79
2

Answer:

I hope it will help you.

Attachments:
Answered by Anonymous
31

 \huge \mathfrak \red{answer}

 \bf{ \underline{ \boxed{ \red{ \tt{ \sqrt{7} +  \sqrt{6 \: }}}}}}

___________________________________

 \sf \huge \underline{Question}

the value of

 \rm{ \frac{1}{ \sqrt{7}  -  \sqrt{6}} }

___________________________________

step by step explanation:

  \tt \large \red{⟹ \:  \frac{1}{ \sqrt{7} -  \sqrt{6}} }

now we have to rationalize the denominator we get,

 \tt \blue{⟹ \:  =  \frac{( \sqrt{7} +  \sqrt{6})  }{( \sqrt{7} -  \sqrt{6}) ( \sqrt{7} +  \sqrt{6})    }}

 \tt \pink{⟹ \:  =  \frac{( \sqrt{7} +  \sqrt{6})  }{( \sqrt{7}) {}^{2} - ( \sqrt{6}) {}^{2}    }}

in the denominator we know that formula of idenity (algebraic)

 \bf{  \underline{ \boxed{ \green {\tt{ {a}^{2} -  {b}^{2} = (a + b)(a - b) \: }}}}}}

 \tt \green{⟹ \:  =  \frac{( \sqrt{7} +  \sqrt{6}) }{(7 - 6)}}

 \tt \orange{⟹ \:  =  \frac{( \sqrt{7} +  \sqrt{6}) }{1}}

 \tt \purple{⟹ \:  =  \sqrt{7} +  \sqrt{6}}

________________________________

so,

 \rm \red{⟹ \:  =  \frac{1}{ \sqrt{7} -  \sqrt{6}}} =  \sqrt{7}   +  \sqrt{6}

i hope it's help uuh

Similar questions