Math, asked by jainluvdeep1, 7 months ago

the value of 1/
Sec²o + 1/cosec²e​

Answers

Answered by babitaji2018
1

Answer:

Solution :

\sqrt{\dfrac{1\: + \: sin\theta}{1\: - \: sin\theta}}

1−sinθ

1+sinθ

\sqrt{\dfrac{1\:+\: sin\theta}{1\: -\: sin\theta}\times\dfrac{1\: +\: sin\theta}{1\: + \: sin\theta}}

1−sinθ

1+sinθ

×

1+sinθ

1+sinθ

\sqrt{\dfrac{(1\: + \: sin\theta)^{2}}{1^{2}\: - \: sin^{2}\theta}}

1

2

−sin

2

θ

(1+sinθ)

2

\sqrt{\dfrac{(1\: + \: sin\theta)^{2}}{Cos^2\theta}}

Cos

2

θ

(1+sinθ)

2

\dfrac{1\: + \: sin\theta}{Cos\theta}

Cosθ

1+sinθ

\dfrac{1}{Cos\theta}\: + \: \dfrac{sin\theta}{cos\theta}

Cosθ

1

+

cosθ

sinθ

sec\: \theta \: + \: tan\: \thetasecθ+tanθ

Answered by rajindersingh87877
0

Answer:

ajjshdhdhdhdn

Step-by-step explanation:

bdbdhdhdndnd

Similar questions