the value of 1/
Sec²o + 1/cosec²e
Answers
Answered by
1
Answer:
Solution :
\sqrt{\dfrac{1\: + \: sin\theta}{1\: - \: sin\theta}}
1−sinθ
1+sinθ
\sqrt{\dfrac{1\:+\: sin\theta}{1\: -\: sin\theta}\times\dfrac{1\: +\: sin\theta}{1\: + \: sin\theta}}
1−sinθ
1+sinθ
×
1+sinθ
1+sinθ
\sqrt{\dfrac{(1\: + \: sin\theta)^{2}}{1^{2}\: - \: sin^{2}\theta}}
1
2
−sin
2
θ
(1+sinθ)
2
\sqrt{\dfrac{(1\: + \: sin\theta)^{2}}{Cos^2\theta}}
Cos
2
θ
(1+sinθ)
2
\dfrac{1\: + \: sin\theta}{Cos\theta}
Cosθ
1+sinθ
\dfrac{1}{Cos\theta}\: + \: \dfrac{sin\theta}{cos\theta}
Cosθ
1
+
cosθ
sinθ
sec\: \theta \: + \: tan\: \thetasecθ+tanθ
Answered by
0
Answer:
ajjshdhdhdhdn
Step-by-step explanation:
bdbdhdhdndnd
Similar questions