Math, asked by Fighters9571, 1 year ago

The value of ∫|1- x^2| dx where, x→(- 2, 3) is

Answers

Answered by Pitymys
0

Here the interval of integration is  (-2,3) . Divide it into 3 intervals,

  (-2,3)= (-2,-1)\cup (-1,1) \cup (1,3) .

In the interval,  (-2,-1) \cup (1,3) ,

 |1-x^2|=x^2-1


In the interval,  (-1,1)  ,

 |1-x^2|=1-x^2

Thus the integral is,

 \int\limits^3_{-2} {|1-x^2|} \, dx=\int\limits^{-1}_{-2} {(x^2-1)} \, dx+\int\limits^1_{-1} {(1-x^2)} \, dx+\int\limits^3_{1} {(x^2-1)} \, dx\\<br />\int\limits^3_{-2} {|1-x^2|} \, dx=[\frac{x^3}{3}-x]^ {-1}_{-2}+[x-\frac{x^3}{3}] ^1_{-1}+[\frac{x^3}{3}-x] ^3_{1}\\<br />\int\limits^3_{-2} {|1-x^2|} \, dx=\frac{4}{3} +\frac{4}{3}+\frac{20}{3}\\<br />\int\limits^3_{-2} {|1-x^2|} \, dx=\frac{28}{3}


Similar questions