Math, asked by prachisawant601, 3 months ago

The value of 10C3 + 8C2 is
1.248
2. 145
3. 108
4. 148​

Answers

Answered by Aarav8820
0

Answer:

the value is 148. I think this is the answer.

Answered by pulakmath007
0

\displaystyle \sf{ {}^{10}C_3    +{}^{8}C_ 2} = 148

Given :

The expression

\displaystyle \sf{ {}^{10}C_3    +{}^{8}C_ 2}

To find :

The value of the expression

1. 248

2. 145

3. 108

4. 148

Formula :

\displaystyle \sf{  {}^{n} C_r = \frac{n!}{r!(n - r)!} }

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{ {}^{10}C_3    +{}^{8}C_ 2}

Step 2 of 2 :

Find the value of the expression

\displaystyle \sf{ {}^{10}C_3    +{}^{8}C_ 2}

\displaystyle \sf{ = \frac{10!}{3!(10 - 3)!} +  \frac{8!}{2!(8 - 2)!}  }

\displaystyle \sf{ = \frac{10!}{3! \: 7!} +  \frac{8!}{2! \: 6!}  }

\displaystyle \sf{ = \frac{10 \times 9 \times 8 \times 7!}{3! \: 7!} +  \frac{8 \times 7 \times 6!}{2! \: 6!}  }

\displaystyle \sf{ = \frac{10 \times 9 \times 8}{3! } +  \frac{8 \times 7 }{2! }  }

\displaystyle \sf{ = \frac{10 \times 9 \times 8}{3 \times 2 \times 1 } +  \frac{8 \times 7 }{2 \times 1 }  }

\displaystyle \sf{ =120 + 28 }

\displaystyle \sf{ =148 }

Hence the correct option is 4. 148

Similar questions