Math, asked by charyamogh, 8 months ago

The value of 11 cot²θ - 11 cosec²θ is :​

Answers

Answered by shrimannarayan607
0

Answer:

\frac{11}{cot^2\theta}-\frac{11}{cos^2\theta}

cot

2

θ

11

cos

2

θ

11

=11(\frac{1}{cot^2\theta})-11(\frac{1}{cos^2\theta})=11(

cot

2

θ

1

)−11(

cos

2

θ

1

)

=11tan^2\theta-11sec^2\theta=11tan

2

θ−11sec

2

θ

=11(tan^2\theta-sec^2\theta)=11(tan

2

θ−sec

2

θ)

=-11(sec^2\theta-tan^2\theta)=−11(sec

2

θ−tan

2

θ)

\text{using}using

\boxed{\bf\,sec^2\theta-tan^2\theta=1}

sec

2

θ−tan

2

θ=1

\text{we get}we get

=11(1)=11(1)

=-11=−11

\implies\boxed{\bf\,11(\frac{11}{cot^2\theta})-(\frac{11}{cos^2\theta})=-11}⟹

11(

cot

2

θ

11

)−(

cos

2

θ

11

)=−11

Similar questions