Math, asked by sonal75ch, 21 hours ago

The value of 14^2 +15^2 + ... + 30^2 = ?​

Answers

Answered by mathdude500
4

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\: {14}^{2} +  {15}^{2} +  {16}^{2}  +  -  -  -  +  {30}^{2}

can be rewritten as

\rm= {1}^{2} +  {2}^{2} +  {3}^{2}  +  -  -  -  +  {30}^{2} -  [{1}^{2} +  {2}^{2} +  -  -  +  {13}^{2}]

\rm \:  =  \: \displaystyle\sum_{k=1}^{30} {k}^{2}  \:  - \:  \displaystyle\sum_{k=1}^{13} {k}^{2}

We know,

\boxed{\tt{ \displaystyle\sum_{k=1}^{n} {k}^{2} =  \frac{n(n + 1)(2n + 1)}{6} \: }}

So, using this identity, we get

\rm \:  =  \: \dfrac{30(30 + 1)(60 + 1)}{6}  - \dfrac{13(13 + 1)(26 + 1)}{6}

\rm \:  =  \: 5 \times 31 \times 61 - 13 \times 7 \times 9

\rm \:  =  \: 9455 - 819

\rm \:  =  \: 8636

Hence,

\rm :\longmapsto\:\boxed{\tt{ {14}^{2} +  {15}^{2} +  {16}^{2}  +  -  -  -  +  {30}^{2} = 8636}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\boxed{\tt{ \displaystyle\sum_{k=1}^{n}1 = n \: }}

\boxed{\tt{ \displaystyle\sum_{k=1}^{n}k =  \frac{n(n + 1)}{2}  \: }}

\boxed{\tt{ \displaystyle\sum_{k=1}^{n} {k}^{3} =  \bigg[\frac{n(n + 1)}{2}\bigg] ^{2}   \: }}

Similar questions