the value of 16sin^3teta+ 8 cos^3 teta is
Answers
answer
16 \sin^3 \theta+ 8\cos^3 \theta =16sin
3
θ+8cos
3
θ=
To prove:
Simplify.
Solution:
Formula:
$$\begin{lgathered}\bold{\sin 3\theta= 3\sin \theta -4\sin^3 \theta}\\\end{lgathered}$$
$$\begin{lgathered}\bold{4\sin^3 \theta= 3\sin \theta -\sin 3\theta}\\\end{lgathered}$$
$$\bold{ \cos3\theta= 4\cos^3 \theta-3\cos \theta}$$
$$\bold{ 4\cos^3 \theta=\cos3\theta +3\cos \theta}$$
$$\Rightarrow 16 \sin^3 \theta+ 8\cos^3 \theta = 4 \cdot 4 \sin^3 \theta+ 2 \cdot 4\cos^3 \theta$$
$$\begin{lgathered}= 4 (3\sin \theta- \sin 3\theta)+ 2 (\cos 3\theta+3\cos \theta)\\\\= 12\sin \theta- 4\sin 3\theta+ 2\cos 3\theta+6\cos \theta\end{lgathered}$$
The final answer is= $$\begin{lgathered}12\sin \theta- 4\sin 3\theta+ 2\cos 3\theta+6\cos \theta \\\\\end{lgathered}$$