Math, asked by btarunir, 11 months ago

The value of √2+√3/√(2+√3)

Answers

Answered by ruhimhatre249
0

The value of \sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}} }

2−

3

2+

3

is 3.73.

Step-by-step explanation:

We have,

\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}} }

2−

3

2+

3

To find, the value of \sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}

2−

3

2+

3

= ?

Rationalising numerator and denominator, we get

\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}\times\dfrac{2+\sqrt{3}}{2+\sqrt{3} }

=\sqrt{\dfrac{(2+\sqrt{3})^{2} }{2^{2} -(\sqrt{3})^{2} }

[ ∵ a^{2} -b^{2} =(a+b)(a-b)a

2

−b

2

=(a+b)(a−b)

=\sqrt{\dfrac{(2+\sqrt{3})^{2} }{4 -3}

=\sqrt{\dfrac{(2+\sqrt{3})^{2} }{1}

=2+\sqrt{3}=2+

3

= 2 + 1.73 [∵ \sqrt{3}

3

= 1.73]

= 3.73

Hence, the value of \sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}} }

2−

3

2+

3

is 3.73

Answered by Shiven01
0

Answer:

answer is 1.

Step-by-step explanation:

just rationalise the denominator and get this answer.

hope it helps you......

please mark it as brainliest......

Similar questions