Math, asked by dharunkar09, 5 months ago

the value of (-2/3) power 4 is equal to​

Answers

Answered by nanditapsingh77
7

(-2/3)^4

= (-2^4 / 3^4)

= (16/81)

HOPE IT HELPS..PLZ MARK MY ANSWER AS THE BRAINLIEST.. FOLLOW ME AND ALSO THANK MY ANSWER.. ❤❤

Answered by pulakmath007
1

\displaystyle \sf{ {\bigg(  -  \frac{2}{3}  \bigg)}^{4}  } =  \bf \frac{16}{81}

Given :

\displaystyle \sf{ {\bigg(  -  \frac{2}{3}  \bigg)}^{4}  }

To find :

The value of the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{ {\bigg(  -  \frac{2}{3}  \bigg)}^{4}  }

Step 2 of 2 :

Find the value of the expression

\displaystyle \sf{ {\bigg(  -  \frac{2}{3}  \bigg)}^{4}  }

\displaystyle \sf{ =  {( - 1)}^{4}  \times  {\bigg(    \frac{2}{3}  \bigg)}^{4} \:  \:  \: \bigg[ \because\:  {(ab)}^{n}  =  {a}^{n}  \times  {b}^{n}   \: \bigg]  }

\displaystyle \sf{  = {\bigg(  \frac{2}{3}  \bigg)}^{4}  }

\displaystyle \sf{ =  \frac{ {2}^{4} }{ {3}^{4} } \:  \:  \: \bigg[ \:  \because \:{\bigg(  \frac{a}{b}  \bigg)}^{n} =  \frac{ {a}^{n} }{ {b}^{n} }    \bigg]  }

\displaystyle \sf{  =  \frac{2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3}  }

\displaystyle \sf{ =  \frac{16}{81}   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

2. If 2x× 4x=(8)1/3 × (32)1/5 ,then find the value of x

https://brainly.in/question/14155738

Similar questions