the value of 2(3power(n+1)+7(3 power (n-1)divided by 3power(n+2)-2(1/3)power(1-n) is
Answers
Answer:
Given:
\displaystyle\frac{2\;3^{n+1}+7\;3^{n-1}}{3^{n+2}-2(\frac{1}{3})^{1-n}}
3
n+2
−2(
3
1
)
1−n
23
n+1
+73
n−1
=\displaystyle\frac{2\;3^n3^1+7\;3^n3^{-1}}{3^n3^2-2\;3^{n-1}}=
3
n
3
2
−23
n−1
23
n
3
1
+73
n
3
−1
\text{Taking out $3^n$ common from both numerator and denominator}Taking out 3
n
common from both numerator and denominator
=\displaystyle\frac{3^n(2\;3^1+7\;3^{-1})}{3^n(3^2-2\;3^{-1})}=
3
n
(3
2
−23
−1
)
3
n
(23
1
+73
−1
)
=\displaystyle\frac{2\;3^1+7\;3^{-1}}{3^2-2\;3^{-1}}=
3
2
−23
−1
23
1
+73
−1
=\displaystyle\frac{6+\frac{7}{3}}{9-\frac{2}{3}}=
9−
3
2
6+
3
7
=\displaystyle\frac{\frac{18+7}{3}}{\frac{27-2}{3}}=
3
27−2
3
18+7
=\displaystyle\frac{\frac{25}{3}}{\frac{25}{3}}=
3
25
3
25
=\displaystyle\;1=1
\therefore\bf\displaystyle\frac{2\;3^{n+1}+7\;3^{n-1}}{3^{n+2}-2(\frac{1}{3})^{1-n}}=1∴
3
n+2
−2(
3
1
)
1−n
23
n+1
+73
n−1
=1