Math, asked by dasranju1975, 11 months ago

The value of 2/√5-+√3 is ________​

Answers

Answered by arvinddoijode44261
28

Answer:

answer is value is 2√5-√3/2

Answered by smithasijotsl
0

Answer:

\frac{2}{\sqrt{5} - \sqrt{3}  } =   \sqrt{5}  +  \sqrt{3}

Step-by-step explanation:

To find the value of \frac{2}{\sqrt{5} - \sqrt{3}  }, we need to rationalize the denominator

The rationalizing factor is \sqrt{5}  +  \sqrt{3}

To rationalize the denominator, let us multiply and divide the given expression    \frac{2}{\sqrt{5} - \sqrt{3}  } with the rationalizing factor

\frac{2}{\sqrt{5} - \sqrt{3}  }  =   \frac{2}{\sqrt{5} - \sqrt{3}  } * \frac{\sqrt{5}  +  \sqrt{3}}{\sqrt{5}  +  \sqrt{3}}

apply the identity (a+b)(a-b) = a^{2} -b^{2}

= \frac{2 *({\sqrt{5}  +  \sqrt{3})}}{(\sqrt{5})^2 - (\sqrt{3})^2  }

= \frac{2 *({\sqrt{5}  +  \sqrt{3})}}{5-3 }\frac{2 *({\sqrt{5}  +  \sqrt{3})}}{2 }

= \frac{2 *({\sqrt{5}  +  \sqrt{3})}}{2 }

=\sqrt{5}  +  \sqrt{3}\\

\frac{2}{\sqrt{5} - \sqrt{3}  } = \sqrt{5}  +  \sqrt{3}\\

Hence, the value  of    \frac{2}{\sqrt{5} - \sqrt{3}  } =   \sqrt{5}  +  \sqrt{3}

Similar questions