the value of 2.56×10 is<br />dmzkzkmzkz m,jsxhxih
Answers
Explanation:
Step-by-step explanation:
Step-by-step explanation:
\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}
☘℘ɧεŋσɱεŋศɭ☘
\red{\bold{\underline{\underline{❥Question᎓}}}}
❥Question᎓
integrate the function :
\frac{1}{x + xlogx}
x+xlogx
1
\huge\tt\underline\pink{꧁Answer꧂ }
꧁Answer꧂
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
⟹ \frac{1}{x + xlogx} = \frac{1}{x(1 + logx)}⟹
x+xlogx
1
=
x(1+logx)
1
Let 1+logx=t
Differentiating both sides w.r.t.x
⟹ 0 + \frac{1}{x} = \frac{dt}{dx}⟹0+
x
1
=
dx
dt
⟹ \frac{1}{x} = \frac{dt}{dx}⟹
x
1
=
dx
dt
dx = xdtdx=xdt
Integrating function:-
⟹∫ \frac{1}{x + xlogx} dx = ∫ \frac{1}{x(1 + logx)} dx⟹∫
x+xlogx
1
dx=∫
x(1+logx)
1
dx
Putting 1+logx & dx =xdt
= ∫ \frac{1}{x(t)} dt \times x = ∫ \frac{1}{t} dt=∫
x(t)
1
dt×x=∫
t
1
dt
= log |t| + c=log∣t∣+c
Put t=1+logx
= log |1 + logx| + c=log∣1+logx∣+c
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ