the value of 2 cos 2 30 degrees-1 degree
Answers
Answered by
5
Answer:
Hope it helps you.
Step-by-step explanation:
The value of cos^2(30) is 3/4.
Solution- Since the value of cos(30) from the trigonometric values table is ✓3/2.
So if Cos(30)= ✓3/2
Then, cos^2(30)= (✓3/2)^2 = 3/4
Answered by
4
Answer: The value of 2cos²(30°) - 1 is equal to 0.5
Step-by-step explanation:
cos(2θ) = cos²θ - sin²θ
cos(2θ) = cos²θ - (1 - cos²θ)
cos(2θ) = cos²θ - 1 + cos²θ
cos(2θ) = 2cos²θ - 1
Comparing the RHS of the equation with given sum in question,
2cos²(30°) - 1 = 2cos²θ - 1
⇒ θ = 30°
∴ 2cos²(30°) - 1 = cos(2(30°))
⇒ 2cos²(30°) - 1 = cos(60°)
⇒ 2cos²(30°) - 1 = 1/2
⇒ 2cos²(30°) - 1 = 0.5
Alternate method :
cos(30°) =
Substituting the value of cos(30°) in given sum :
2cos²(30°) - 1
⇒
⇒
⇒
⇒
⇒ 0.5
#SPJ2
Similar questions